Question : If $x-\cfrac{1}{x} = 11$, what is the value of $(x^4+\cfrac{1}{x^4})$ ?
1415914163
15127
15131
Solution:
$\require{cancel}$
$x-\frac{1}{x} = 11$
or, $ (x-\frac{1}{x})^2 = (11)^2 $
or, $ x^2 + \frac{1}{x^2} - 2\times \cancel{x} \times \frac{1}{\cancel{x}} = 121 $
or, $(x^2 + \frac{1}{x^2})^2 = (121+2)^2 $
or, $x^4+\frac{1}{x^4} +2 \times \cancel{x^2} \times \frac{1}{\cancel{x^2}} = (123)^2 $
or, $x^4+\frac{1}{x^4} = 15129 - 2 $
or, $x^4+\frac{1}{x^4} = 15127 $
0 Comments