Algebra Complete Solution | Crack SSC Exams | SSC CGL / CHSL / MTS / Railway Exam

Algebra from Basic to Advance for every competitive exam CGL / CHSL / MTS / Railway etc.


$ x^4 + x^2y^2 + y^4 $
= $ (x^2)^2 + (y^2)^2 + x^2y^2 $
= $ (x^2+y^2)^2 - 2x^2y^2 + x^2y^2 $
= $ (x^2+y^2)^2 - x^2y^2 $
= $ (x^2+y^2)^2 - (xy)^2 $
= $ (x^2+xy +y^2)(x^2-xy +y^2)$
∵ [ $ a^2 - b^2 = (a+b)(a-b) $ ]

Suppose, $ x^2+xy +y^2 =$ and $ x^2-xy +y^2 =$

∴ $ x^4 + x^2y^2 + y^4 = (x^2+xy +y^2)(x^2-xy +y^2) = A \times B $

$(x^2+xy +y^2) + (x^2-xy +y^2) = A + B $
or, $x^2+xy +y^2 + x^2-xy +y^2 = A + B $
or, $ 2x^2 + 2y^2 = A + B $
or, $2(x^2+y^2) = A + B $
or, $ x^2+y^2 = \cfrac{A+B}{2} $

$(x^2+xy +y^2) - (x^2-xy +y^2) = A - B $
or, $x^2+xy +y^2 - x^2+xy -y^2 = A - B $
or, $ 2xy = A - B $
or, $ xy = \cfrac{A-B}{2} $



Example :

If $ x^4 + x^2y^2 + y^4 = 189 $ and $ x^2-xy +y^2 = 9 $ , then

∴ $ x^4 + x^2y^2 + y^4 = (x^2+xy +y^2)(x^2-xy +y^2) =$ AB = 189 and $x^2-xy +y^2 = $B = 9

i. $ x^2+xy +y^2 $= A = $\cfrac{AB}{B}$$ = \cfrac{189}{9} = 21 $


ii. $ x^2 + y^2 = $$\cfrac{A+B}{2}$ $= \cfrac{21+9}{2} = \cfrac{30}{2} = 15 $


iii. $ xy = $$\cfrac{A-B}{2}$$ = \cfrac{21-9}{2} = \cfrac{12}{2} = 6 $


iv. $ (x+y)^2 = x^2 +y^2 +2xy = 15 + (2 \times 6) $
or, $ x+y =$ $\sqrt{x^2 +y^2 +2xy}$ $= \sqrt{15 + (2 \times 6)} = \sqrt{27} = 3\sqrt{3} $


v. $ (x-y)^2 = x^2 +y^2 -2xy = 15 - (2 \times 6) $
or, $ x-y = $$\sqrt{x^2 +y^2 -2xy}$ $= \sqrt{15 - (2 \times 6)} = \sqrt{3} = \sqrt{3} $


vi. $ \cfrac{x}{y}+\cfrac{y}{x} =$ $\cfrac{x^2+y^2}{xy}$$ =\cfrac{15}{6} = \cfrac{5}{2} $


vii. $ \cfrac{x^2}{y^2}+\cfrac{y^2}{x^2} = $$(\cfrac{x}{y}+\cfrac{y}{x})^2 - 2\times \cfrac{x}{y}\times\cfrac{y}{x}$ $= (\cfrac{5}{2})^2 - 2 = \cfrac{25}{4}-2 = \cfrac{25-8}{4} = \cfrac{17}{4} = 4\cfrac{1}{4} $




1. If $ x^2 - xy + y^2 = 13 $ and $ x^4 + x^2y^2 + y^4 = 312$, then the value of $ x^2 + xy + y^2 $ is

(A) 18     (B) 21     (C) 24     (D) 27
   



Solution

$ x^2 + xy + y^2 $

= $\cfrac{312}{13}$

= $24 $




2. If $ x^2 +y^2 = x^{-2}(777-y^4) $ and $ x+y = x^{-1}(37-y^2) $, then find the value of $ x^2+y(y-x)$ = ?

(A) 29     (B) 21     (C) 23     (D) 31    



Solution

$ x^2 +y^2 = x^{-2}(777-y^4) $
or, $ x^2 +y^2 = \cfrac{1}{x^2}(777-y^4) $
or, $ x^4 +x^2y^2 + y^4 = 777 $

$ x+y = x^{-1}(37-y^2) $
or, $ x+y = \cfrac{1}{x}(37-y^2) $
or, $x^2 +xy + y^2 = 37 $

∴ $ x^2+y(y-x) $

=$ x^2 + y^2 -xy $

=$ \cfrac{777}{37} $

=$ 21$



3. If $ a+b+\sqrt{ab} = 4 $, then find $ \cfrac{a+b-\sqrt{ab}}{a^2+b^2+ab}$ =?

(A) 4     (B) 0.25     (C) 1     (D) 16    



Solution

$ \cfrac{a+b-\sqrt{ab}}{a^2+b^2+ab}$
= $ \cfrac{(a+b-\sqrt{ab})}{(a+b+\sqrt{ab})(a+b-\sqrt{ab})}$
= $ \cfrac{1}{(a+b+\sqrt{ab})} $
= $ \cfrac{1}{4} $
= 0.25



4. $ x^4+x^2y^2+y^4 = 3441 $ and $ x^2-xy+y^2 = 37 $; then find $ x+y+xy = ? $

(A) 39     (B) 23     (C) 49     (D)31
   



Solution

$ x^2+xy+y^2 = \cfrac{3441}{37} = 93 $
∴$ x^2 +y^2 = \cfrac{93+37}{2} = 65 $
And $ xy = \cfrac{93 - 37}{2} = \cfrac{56}{2} = 28 $
Now, $ x+ y $

=$ \sqrt{65 - (2\times 28)}$

=$ \sqrt{65-56} $

=$ \sqrt{9} $

=$3 $
∴ $ x+y+xy = 3 + 28 = 31 $



5. If $ x^4+x^2y^2+y^4 = 133 $ and $ x^2-xy+y^2 = 7 $ , then find the value of $(x^2+y^2)$ is

(A) 19     (B) 16     (C) 12     (D)13   
 



Solution

$ x^2+xy+y^2 = \cfrac{133}{7} = 19 $

∴ $ x^2 + y^2 $

=$ \cfrac{19+7}{2}$

=$ \cfrac{26}{2} = 13 $



6. If $ a^4+a^2b^2+b^4 = \cfrac{39}{512} $ and $ a^2+ab+b^2 = \cfrac{13}{32} $ , then the value of $ab$ is

(A) $ \cfrac{1}{16}$     (B)$ \cfrac{9}{64} $     (C)$ \cfrac{13}{128} $     (D)$ \cfrac{7}{64} $  
  



Solution

$ a^2-ab+b^2 $

= $ \cfrac{39}{512} \div \cfrac{13}{32} $

=$ \cfrac{39}{512} \times \cfrac{32}{13} $

=$\cfrac{3}{16} $

∴ $ ab $

=$ \cfrac{\cfrac{13}{32} - \cfrac{3}{16}}{2} $

=$ \cfrac{\cfrac{7}{32}}{2} $

=$ \cfrac{7}{64} $



7. If $ 16x^4 + 36x^2y^2+81y^4 = 806 $ and $ 4x^2 - 6xy + 9y^2 = 26 $, then find the value of $3xy$ ?

(A) 1.5     (B) 1.25     (C)$ 1\cfrac{2}{3} $     (D) 2    



Solution

$ 4x^2 + 6xy + 9y^2 $

=$ \cfrac{806}{26} $

=$31 $

∴ $ xy $

=$ \cfrac{31-26}{12} $

=$ \cfrac{5}{12} $

or, $ 3xy $

=$ 3 \times \cfrac{5}{12} $

=$ \cfrac{5}{4} $

=$ 1.25 $



8. If $ x^2 -xy +y^2 = 13$ and $ x^2 +xy+y^2 = 37$, then the value of $ \cfrac{x^6-y^6}{x^2-y^2} $ is

(A) 481     (B) 500     (C) 520     (D) 444   
 



Solution

$ \cfrac{x^6-y^6}{x^2-y^2} $
=$ \cfrac{(x^2)^3 - (y^2)^3}{x^2-y^2} $
=$ \cfrac{(x^2 - y^2)(x^4+x^2y^2+y^4)}{(x^2-y^2)} $
=$ x^4+x^2y^2+y^4 $
= $(x^2 +xy+y^2)(x^2 -xy+y^2) $
= $37 \times 13 $
= 481



9. If $ x^4 + x^2y^2 + y^4 = \cfrac{21}{256} $ and $ x^2 +xy+y^2 = \cfrac{3}{16} $, then $(x+y)$ = ?

(A) $ \cfrac{1}{16}$     (B)$ \cfrac{5}{8} $     (C)$ \cfrac{3}{8} $     (D)$ \cfrac{1}{4} $  
  



Solution

$ x^2 -xy+y^2 $

=$ \cfrac{21}{256} \div \cfrac{3}{16} $

=$ \cfrac{21}{256} \times \cfrac{16}{3} $

=$ \cfrac{7}{16} $

$xy $

=$ \cfrac{\cfrac{3}{16} - \cfrac{7}{16}}{2} $

=$ \cfrac{\cfrac{-4}{16}}{2} $

=$ \cfrac{-2}{16} $

$ x^2 +xy+y^2 + xy = \cfrac{3}{16} + \cfrac{-2}{16} $
or,$ x^2 +2xy+y^2 = \cfrac{3-2}{16} $
or, $ (x+y)^2 = \cfrac{1}{16} $
or, $ (x+y) = \sqrt{\cfrac{1}{16}} = \cfrac{1}{4} $



10. If $ x^2 -xy +y^2 = 17 $ and $ x^4 +x^2y^2 + y^4 = 425 $, then the value of $ \cfrac{x}{y} + \cfrac{y}{x} $ = ?

(A) 6.25     (B) 5.25     (C) 6.4     (D) 5.5
   



Solution

$ x^2 + xy +y^2 $

=$ \cfrac{425}{17} $

=$ 25 $

$ x^2 + y^2 $

=$ \cfrac{25+17}{2} $

=$ \cfrac{42}{2} $

=$ 21 $

$ xy $

=$ \cfrac{25-17}{2} $

=$ \cfrac{8}{2} $

=$ 4 $

$ \cfrac{x}{y} + \cfrac{y}{x} $
= $ \cfrac{x^2 + y^2 }{xy} $
= $\cfrac{21}{4} $
= 5.25



You May Read Also :

Post a Comment

0 Comments